94 research outputs found

    Plant stem cells: The only constant thing is change

    Get PDF
    AbstractRecent studies in Arabidopsis have uncovered a negative feedback loop that couples the antagonistic functions of the WUSCHEL and CLAVATA loci to control stem cell fate in the shoot apical meristem. Abundance of the CLAVATA3 protein limits signaling through this pathway

    Plant Meristems: The Fiendish SU DOKU of Stem-Cell Maintenance

    Get PDF
    Three recent studies have uncovered effector mechanisms and novel pathways in the regulation of the dynamic changes to cell behaviour that occur in plant meristems. The results show how exquisite regulation of cell-cycle mechanisms is central to root stem cell homeostasis

    Extreme environments:Crucibles of potent abiotic stress tolerance

    Get PDF

    Inducible reporter/driver lines for the Arabidopsis root with intrinsic reporting of activity state

    Get PDF
    International audienceCell-, tissue- or organ-specific inducible expression systems are powerful tools for functional analysis of changes to the pattern, level or timing of gene expression. However, plant researchers lack standardised reagents that promote reproducibility across the community. Here, we report the development and functional testing of a Gateway-based system for quantitatively, spatially and temporally controlling inducible gene expression in Arabidopsis that overcomes several drawbacks of the legacy systems. We used this modular driver/effector system with intrinsic reporting of spatio-temporal promoter activity to generate 18 well-characterised homozygous transformed lines showing the expected expression patterns specific for the major cell types of the Arabidopsis root; seed and plasmid vectors are available through the Arabidopsis stock centre. The system's tight regulation was validated by assessing the effects of diphtheria toxin A chain expression. We assessed the utility of Production of Anthocyanin Pigment 1 (PAP1) as an encoded effector mediating cell-autonomous marks. With this shared resource of characterised reference driver lines, which can be expanded with additional promoters and the use of other fluorescent proteins, we aim to contribute towards enhancing reproducibility of qualitative and quantitative analyses

    Blind Inpainting of Large-scale Masks of Thin Structures with Adversarial and Reinforcement Learning

    Get PDF
    Several imaging applications (vessels, retina, plant roots, road networks from satellites) require the accurate segmentation of thin structures for subsequent analysis. Discontinuities (gaps) in the extracted foreground may hinder down-stream image-based analysis of biomarkers, organ structure and topology. In this paper, we propose a general post-processing technique to recover such gaps in large-scale segmentation masks. We cast this problem as a blind inpainting task, where the regions of missing lines in the segmentation masks are not known to the algorithm, which we solve with an adversarially trained neural network. One challenge of using large images is the memory capacity of current GPUs. The typical approach of dividing a large image into smaller patches to train the network does not guarantee global coherence of the reconstructed image that preserves structure and topology. We use adversarial training and reinforcement learning (Policy Gradient) to endow the model with both global context and local details. We evaluate our method in several datasets in medical imaging, plant science, and remote sensing. Our experiments demonstrate that our model produces the most realistic and complete inpainted results, outperforming other approaches. In a dedicated study on plant roots we find that our approach is also comparable to human performance. Implementation available at \url{https://github.com/Hhhhhhhhhhao/Thin-Structure-Inpainting}

    Arabidopsis DUO POLLEN3 Is a Key Regulator of Male Germline Development and Embryogenesis

    Get PDF
    Male germline development in angiosperms produces the pair of sperm cells required for double fertilization. A key regulator of this process in Arabidopsis thaliana is the male germline-specific transcription factor DUO POLLEN1 (DUO1) that coordinates germ cell division and gamete specification. Here, we uncover the role of DUO3, a nuclear protein that has a distinct, but overlapping role with DUO1 in male germline development. DUO3 is a conserved protein in land plants and is related to GON-4, a cell lineage regulator of gonadogenesis in Caenorhabditis elegans. Mutant duo3-1 germ cells either fail to divide or show a delay in division, and we show that, unlike DUO1, DUO3 promotes entry into mitosis independent of the G2/M regulator CYCB1;1. We also show that DUO3 is required for the expression of a subset of germline genes under DUO1 control and that like DUO1, DUO3 is essential for sperm cell specification and fertilization. Furthermore, we demonstrate an essential sporophytic role for DUO3 in cell division and embryo patterning. Our findings demonstrate essential developmental roles for DUO3 in cell cycle progression and cell specification in both gametophytic and sporophytic tissues

    The Phosphate Fast-Responsive Genes <i>PECP1</i> and <i>PPsPase1</i> Affect Phosphocholine and Phosphoethanolamine Content

    Get PDF
    International audiencePhosphate starvation-mediated induction of the HAD-type phosphatases PPsPase1 (AT1G73010) and PECP1 (AT1G17710) has been reported in Arabidopsis (Arabidopsis thaliana). However, little is known about their in vivo function or impact on plant responses to nutrient deficiency. The preferences of PPsPase1 and PECP1 for different substrates have been studied in vitro but require confirmation in planta. Here, we examined the in vivo function of both enzymes using a reverse genetics approach. We demonstrated that PPsPase1 and PECP1 affect plant phosphocholine and phosphoethanolamine content, but not the pyrophosphate-related phenotypes. These observations suggest that the enzymes play a similar role in planta related to the recycling of polar heads from membrane lipids that is triggered during phosphate starvation. Altering the expression of the genes encoding these enzymes had no effect on lipid composition, possibly due to compensation by other lipid recycling pathways triggered during phosphate starvation. Furthermore, our results indicated that PPsPase1 and PECP1 do not influence phosphate homeostasis, since the inactivation of these genes had no effect on phosphate content or on the induction of molecular markers related to phosphate starvation. A combination of transcriptomics and imaging analyses revealed that PPsPase1 and PECP1 display a highly dynamic expression pattern that closely mirrors the phosphate status. This temporal dynamism, combined with the wide range of induction levels, broad expression, and lack of a direct effect on Pi content and regulation, makes PPsPase1 and PECP1 useful molecular markers of the phosphate starvation response
    corecore